Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474036

RESUMO

Alveolar rhabdomyosarcoma (ARMS), an invasive subtype of rhabdomyosarcoma (RMS), is associated with chromosomal translocation events resulting in one of two oncogenic fusion genes, PAX3-FOXO1 or PAX7-FOXO1. ARMS patients exhibit an overexpression of the pleiotropic cytokine transforming growth factor beta (TGF-ß). This overexpression of TGF-ß1 causes an increased expression of a downstream transcription factor called SNAIL, which promotes epithelial to mesenchymal transition (EMT). Overexpression of TGF-ß also inhibits myogenic differentiation, making ARMS patients highly resistant to chemotherapy. In this review, we first describe different types of RMS and then focus on ARMS and the impact of TGF-ß in this tumor type. We next highlight current chemotherapy strategies, including a combination of the FDA-approved drugs vincristine, actinomycin D, and cyclophosphamide (VAC); cabozantinib; bortezomib; vinorelbine; AZD 1775; and cisplatin. Lastly, we discuss chemotherapy agents that target the differentiation of tumor cells in ARMS, which include all-trans retinoic acid (ATRA) and 5-Azacytidine. Improving our understanding of the role of signaling pathways, such as TGF-ß1, in the development of ARMS tumor cells differentiation will help inform more tailored drug administration in the future.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Humanos , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/patologia , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta1 , Fatores de Transcrição Box Pareados/genética , Transição Epitelial-Mesenquimal , Rabdomiossarcoma/genética , Proteínas de Fusão Oncogênica/genética
2.
Nat Commun ; 15(1): 1703, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402212

RESUMO

Fusion-positive rhabdomyosarcoma (FP-RMS) is an aggressive pediatric sarcoma driven primarily by the PAX3-FOXO1 fusion oncogene, for which therapies targeting PAX3-FOXO1 are lacking. Here, we screen 62,643 compounds using an engineered cell line that monitors PAX3-FOXO1 transcriptional activity identifying a hitherto uncharacterized compound, P3FI-63. RNA-seq, ATAC-seq, and docking analyses implicate histone lysine demethylases (KDMs) as its targets. Enzymatic assays confirm the inhibition of multiple KDMs with the highest selectivity for KDM3B. Structural similarity search of P3FI-63 identifies P3FI-90 with improved solubility and potency. Biophysical binding of P3FI-90 to KDM3B is demonstrated using NMR and SPR. P3FI-90 suppresses the growth of FP-RMS in vitro and in vivo through downregulating PAX3-FOXO1 activity, and combined knockdown of KDM3B and KDM1A phenocopies P3FI-90 effects. Thus, we report KDM inhibitors P3FI-63 and P3FI-90 with the highest specificity for KDM3B. Their potent suppression of PAX3-FOXO1 activity indicates a possible therapeutic approach for FP-RMS and other transcriptionally addicted cancers.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Criança , Humanos , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Rabdomiossarcoma Alveolar/genética , Linhagem Celular Tumoral , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases/metabolismo
3.
Nat Commun ; 14(1): 8361, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102136

RESUMO

Activation of oncogenic gene expression from long-range enhancers is initiated by the assembly of DNA-binding transcription factors (TF), leading to recruitment of co-activators such as CBP/p300 to modify the local genomic context and facilitate RNA-Polymerase 2 (Pol2) binding. Yet, most TF-to-coactivator recruitment relationships remain unmapped. Here, studying the oncogenic fusion TF PAX3-FOXO1 (P3F) from alveolar rhabdomyosarcoma (aRMS), we show that a single cysteine in the activation domain (AD) of P3F is important for a small alpha helical coil that recruits CBP/p300 to chromatin. P3F driven transcription requires both this single cysteine and CBP/p300. Mutants of the cysteine reduce aRMS cell proliferation and induce cellular differentiation. Furthermore, we discover a profound dependence on CBP/p300 for clustering of Pol2 loops that connect P3F to its target genes. In the absence of CBP/p300, Pol2 long range enhancer loops collapse, Pol2 accumulates in CpG islands and fails to exit the gene body. These results reveal a potential novel axis for therapeutic interference with P3F in aRMS and clarify the molecular relationship of P3F and CBP/p300 in sustaining active Pol2 clusters essential for oncogenic transcription.


Assuntos
RNA Polimerase II , Rabdomiossarcoma Alveolar , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Cisteína/metabolismo , Fatores de Transcrição/metabolismo , Fator de Transcrição PAX3/genética , Rabdomiossarcoma Alveolar/genética , RNA/metabolismo , Ativação Transcricional , Ligação Proteica , Proteína Forkhead Box O1/metabolismo
4.
Nat Commun ; 14(1): 7291, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968277

RESUMO

Fusion-positive rhabdomyosarcoma (FP-RMS) driven by the expression of the PAX3-FOXO1 (P3F) fusion oncoprotein is an aggressive subtype of pediatric rhabdomyosarcoma. FP-RMS histologically resembles developing muscle yet occurs throughout the body in areas devoid of skeletal muscle highlighting that FP-RMS is not derived from an exclusively myogenic cell of origin. Here we demonstrate that P3F reprograms mouse and human endothelial progenitors to FP-RMS. We show that P3F expression in aP2-Cre expressing cells reprograms endothelial progenitors to functional myogenic stem cells capable of regenerating injured muscle fibers. Further, we describe a FP-RMS mouse model driven by P3F expression and Cdkn2a loss in endothelial cells. Additionally, we show that P3F expression in TP53-null human iPSCs blocks endothelial-directed differentiation and guides cells to become myogenic cells that form FP-RMS tumors in immunocompromised mice. Together these findings demonstrate that FP-RMS can originate from aberrant development of non-myogenic cells driven by P3F.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Animais , Criança , Humanos , Camundongos , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Proteína Forkhead Box O1/metabolismo , Regulação Neoplásica da Expressão Gênica , Músculo Esquelético/metabolismo , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição Box Pareados/genética , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Rabdomiossarcoma Alveolar/genética
5.
Cancer Res Commun ; 3(10): 2030-2043, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37732905

RESUMO

The tumor-specific chromosomal translocation product, PAX3::FOXO1, is an aberrant fusion protein that plays a key role for oncogenesis in the alveolar subtype of rhabdomyosarcoma (RMS). PAX3::FOXO1 represents a validated molecular target for alveolar RMS and successful inhibition of its oncogenic activity is likely to have significant clinical applications. Even though several PAX3::FOXO1 function-based screening studies have been successfully completed, a directly binding small-molecule inhibitor of PAX3::FOXO1 has not been reported. Therefore, we screened small-molecule libraries to identify compounds that were capable of directly binding to PAX3::FOXO1 protein using surface plasmon resonance technology. Compounds that directly bound to PAX3::FOXO1 were further evaluated in secondary transcriptional activation assays. We discovered that piperacetazine can directly bind to PAX3::FOXO1 protein and inhibit fusion protein-derived transcription in multiple alveolar RMS cell lines. Piperacetazine inhibited anchorage-independent growth of fusion-positive alveolar RMS cells but not embryonal RMS cells. On the basis of our findings, piperacetazine is a molecular scaffold upon which derivatives could be developed as specific inhibitors of PAX3::FOXO1. These novel inhibitors could potentially be evaluated in future clinical trials for recurrent or metastatic alveolar RMS as novel targeted therapy options. SIGNIFICANCE: RMS is a malignant soft-tissue tumor mainly affecting the pediatric population. A subgroup of RMS with worse prognosis harbors a unique chromosomal translocation creating an oncogenic fusion protein, PAX3::FOXO1. We identified piperacetazine as a direct inhibitor of PAX3::FOXO1, which may provide a scaffold for designing RMS-specific targeted therapy.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Humanos , Proteína Forkhead Box O1/genética , Fatores de Transcrição Box Pareados/genética , Fator de Transcrição PAX3/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma Alveolar/genética , Translocação Genética
6.
Genes Chromosomes Cancer ; 62(12): 732-739, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37530573

RESUMO

Rhabdomyosarcomas (RMS) constitute a heterogeneous spectrum of tumors with respect to clinical behavior and tumor morphology. The paternal uniparental disomy (pUPD) of 11p15.5 is a molecular change described mainly in embryonal RMS. In addition to LOH, UPD, the MLPA technique (ME030kit) also determines copy number variants and methylation of H19 and KCNQ1OT1 genes, which have not been systematically investigated in RMS. All 127 RMS tumors were divided by histology and PAX status into four groups, pleomorphic histology (n = 2); alveolar RMS PAX fusion-positive (PAX+; n = 39); embryonal RMS (n = 70) and fusion-negative RMS with alveolar pattern (PAX-RMS-AP; n = 16). The following changes were detected; negative (n = 21), pUPD (n = 75), gain of paternal allele (n = 9), loss of maternal allele (n = 9), hypermethylation of H19 (n = 6), hypomethylation of KCNQ1OT1 (n = 6), and deletion of CDKN1C (n = 1). We have shown no difference in the frequency of pUPD 11p15.5 in all groups. Thus, we have proven that changes in the 11p15.5 are not only specific to the embryonal RMS (ERMS), but are often also present in alveolar RMS (ARMS). We have found changes that have not yet been described in RMS. We also demonstrated new potential diagnostic markers for ERMS (paternal duplication and UPD of whole chromosome 11) and for ARMS PAX+ (hypomethylation KCNQ1OT1).


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma Embrionário , Rabdomiossarcoma , Humanos , Rabdomiossarcoma Embrionário/genética , Rabdomiossarcoma Embrionário/patologia , Rabdomiossarcoma/genética , Rabdomiossarcoma Alveolar/genética , Metilação de DNA , Dissomia Uniparental , Cromossomos
7.
J Natl Cancer Inst ; 115(6): 733-741, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36951526

RESUMO

BACKGROUND: Relative to other pediatric cancers, survival for rhabdomyosarcoma (RMS) has not improved in recent decades, suggesting the need to enhance risk stratification. Therefore, we conducted a genome-wide association study for event-free survival (EFS) and overall survival (OS) to identify genetic variants associated with outcomes in individuals with RMS. METHODS: The study included 920 individuals with newly diagnosed RMS who were enrolled in Children's Oncology Group protocols. To assess the association of each single nucleotide polymorphism (SNP) with EFS and OS, we estimated hazard ratios (HRs) and 95% confidence intervals (CIs) using multivariable Cox proportional hazards models, adjusted for clinical covariates. All statistical tests were two sided. We also performed stratified analyses by histological subtype (alveolar and embryonal RMS) and carried out sensitivity analyses of statistically significant SNPs by PAX3/7-FOXO1 fusion status and genetic ancestry group. RESULTS: We identified that rs17321084 was associated with worse EFS (HR = 2.01, 95% CI = 1.59 to 2.53, P = 5.39 × 10-9) and rs10094840 was associated with worse OS (HR = 1.84, 95% CI = 1.48 to 2.27, P = 2.13 × 10-8). Using publicly available data, we found that rs17321084 lies in a binding region for transcription factors GATA2 and GATA3, and rs10094840 is associated with SPAG1 and RNF19A expression. We also identified that CTNNA3 rs2135732 (HR = 3.75, 95% CI = 2.34 to 5.99, P = 3.54 × 10-8) and MED31 rs74504320 (HR = 3.21, 95% CI = 2.12 to 4.86, P = 3.60 × 10-8) were associated with worse OS among individuals with alveolar RMS. CONCLUSIONS: We demonstrated that common germline variants are associated with EFS and OS among individuals with RMS. Additional replication and investigation of these SNP effects may further support their consideration in risk stratification protocols.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Criança , Humanos , Estudo de Associação Genômica Ampla , Rabdomiossarcoma/genética , Rabdomiossarcoma/diagnóstico , Rabdomiossarcoma/patologia , Rabdomiossarcoma Alveolar/genética , Modelos de Riscos Proporcionais , Células Germinativas/patologia , Ubiquitina-Proteína Ligases , Complexo Mediador/genética
8.
Sci Adv ; 9(6): eade9238, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36753540

RESUMO

Rhabdomyosarcoma (RMS) is a group of pediatric cancers with features of developing skeletal muscle. The cellular hierarchy and mechanisms leading to developmental arrest remain elusive. Here, we combined single-cell RNA sequencing, mass cytometry, and high-content imaging to resolve intratumoral heterogeneity of patient-derived primary RMS cultures. We show that the aggressive alveolar RMS (aRMS) subtype contains plastic muscle stem-like cells and cycling progenitors that drive tumor growth, and a subpopulation of differentiated cells that lost its proliferative potential and correlates with better outcomes. While chemotherapy eliminates cycling progenitors, it enriches aRMS for muscle stem-like cells. We screened for drugs hijacking aRMS toward clinically favorable subpopulations and identified a combination of RAF and MEK inhibitors that potently induces myogenic differentiation and inhibits tumor growth. Overall, our work provides insights into the developmental states underlying aRMS aggressiveness, chemoresistance, and progression and identifies the RAS pathway as a promising therapeutic target.


Assuntos
Antineoplásicos , Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Criança , Humanos , Rabdomiossarcoma Alveolar/tratamento farmacológico , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/patologia , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Músculo Esquelético/metabolismo , Diferenciação Celular , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
9.
J Clin Oncol ; 41(13): 2382-2393, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724417

RESUMO

PURPOSE: Novel biomarkers are needed to differentiate outcomes in intermediate-risk rhabdomyosarcoma (IR RMS). We sought to evaluate strategies for identifying circulating tumor DNA (ctDNA) in IR RMS and to determine whether ctDNA detection before therapy is associated with outcome. PATIENTS AND METHODS: Pretreatment serum and tumor samples were available from 124 patients with newly diagnosed IR RMS from the Children's Oncology Group biorepository, including 75 patients with fusion-negative rhabdomyosarcoma (FN-RMS) and 49 with fusion-positive rhabdomyosarcoma (FP-RMS) disease. We used ultralow passage whole-genome sequencing to detect copy number alterations and a new custom sequencing assay, Rhabdo-Seq, to detect rearrangements and single-nucleotide variants. RESULTS: We found that ultralow passage whole-genome sequencing was a method applicable to ctDNA detection in all patients with FN-RMS and that ctDNA was detectable in 13 of 75 serum samples (17%). However, the use of Rhabdo-Seq in FN-RMS samples also identified single-nucleotide variants, such as MYOD1L122R, previously associated with prognosis. Identification of pathognomonic translocations between PAX3 or PAX7 and FOXO1 by Rhabdo-Seq was the best method for measuring ctDNA in FP-RMS and detected ctDNA in 27 of 49 cases (55%). Patients with FN-RMS with detectable ctDNA at diagnosis had significantly worse outcomes than patients without detectable ctDNA (event-free survival, 33.3% v 68.9%; P = .0028; overall survival, 33.3% v 83.2%; P < .0001) as did patients with FP-RMS (event-free survival, 37% v 70%; P = .045; overall survival, 39.2% v 75%; P = .023). In multivariable analysis, ctDNA was independently associated with worse prognosis in FN-RMS but not in the smaller FP-RMS cohort. CONCLUSION: Our study demonstrates that baseline ctDNA detection is feasible and is prognostic in IR RMS.


Assuntos
DNA Tumoral Circulante , Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Humanos , Criança , Prognóstico , Rabdomiossarcoma/patologia , Nucleotídeos , Rabdomiossarcoma Alveolar/genética , Biomarcadores Tumorais/genética
10.
Arkh Patol ; 85(1): 10-15, 2023.
Artigo em Russo | MEDLINE | ID: mdl-36785957

RESUMO

BACKGROUND: Anomalies of the FOXO1 gene in alveolar rhabdomyosarcoma are associated with a worse clinical prognosis, which determines the high value of studying the status of this gene when choosing a therapy strategy. The «gold standard¼ for determining FOXO1 gene rearrangements is currently the fluorescent in situ hybridization (FISH) technique. OBJECTIVE: Study of the relationship between canonical FOXO1 translocation and immunohistochemical expression of new surrogate markers in alveolar rhabdomyosarcoma to determine their predictive value. MATERIAL AND METHODS: 139 cases of rhabdomyosarcoma were retrospectively studied. The study used tissue matrix technology (TMA). On sections obtained from TMA blocks, the FISH technique was implemented using the locus-specific probe MetaSystems XL FOXO1 Break Apart (Metasystems, Germany). Immunohistochemical studies were performed on similar sections from TMA blocks with OLIG2 (Cell Marque Antibodies, clone 211F1.1) and MUC4 (Cell Marque Antibodies, clone 8G7) antibodies. RESULTS: The final expression analysis and statistical processing using a 2x2 contingency table and Fisher's exact test passed 111 cases (76 without FOXO1 rearrangement and 35 with rearrangement). The specificity of OLIG2 and MUC4 expression for FOXO1-rearranged alveolar rhabdomyosarcoma was 85.53% and 80.26%, respectively (p<0.01). CONCLUSION: The present study confirms the high predictive value of the expression of surrogate markers OLIG2 and MUC4 in determining the genetic status of alveolar rhabdomyosarcoma, which makes it possible to predict with high specificity the detection of the FOXO1 gene rearrangement.


Assuntos
Rabdomiossarcoma Alveolar , Humanos , Rabdomiossarcoma Alveolar/diagnóstico , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/metabolismo , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Hibridização in Situ Fluorescente/métodos , Proteína Forkhead Box O1/genética , Estudos Retrospectivos , Biomarcadores , Translocação Genética/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
11.
J Pathol ; 259(3): 342-356, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36573560

RESUMO

The relatively quiet mutational landscape of rhabdomyosarcoma (RMS) suggests that epigenetic deregulation could be central to oncogenesis and tumour aggressiveness. Histone variants have long been recognised as important epigenetic regulators of gene expression. However, the role of histone variants in RMS has not been studied hitherto. In this study, we show that histone variant H3.3 is overexpressed in alveolar RMS (ARMS), an aggressive subtype of RMS. Functionally, knockdown of H3F3A, which encodes for H3.3, significantly impairs the ability of ARMS cells to undertake migration and invasion and reduces Rho activation. In addition, a striking reduction in metastatic tumour burden and improved survival is apparent in vivo. Using RNA-sequencing and ChIP-sequencing analyses, we identified melanoma cell adhesion molecule (MCAM/CD146) as a direct downstream target of H3.3. Loss of H3.3 resulted in a reduction in the presence of active marks and an increase in the occupancy of H1 at the MCAM promoter. Cell migration and invasion were rescued in H3F3A-depleted cells through MCAM overexpression. Moreover, we identified G9a, a lysine methyltransferase encoded by EHMT2, as an upstream regulator of H3F3A. Therefore, this study identifies a novel H3.3 dependent axis involved in ARMS metastasis. These findings establish the potential of MCAM as a therapeutic target for high-risk ARMS patients. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Histonas , Rabdomiossarcoma Alveolar , Humanos , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Regiões Promotoras Genéticas , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/patologia
12.
Fetal Pediatr Pathol ; 42(3): 385-393, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36484735

RESUMO

Objective: In this study, we investigate the molecular rearrangement of FOXO1 in alveolar rhabdomyosarcoma (ARHS) in Saudi pediatric patients. Method: We performed a molecular detection of molecular translocation in 30 pediatric cases of ARHS using FOXO1 dual color break-apart FISH probe (ZytoLight®, 13q14.11) and PAX5 dual color break-apart FISH probe (ZytoLight®, 9p13.2). Results: All analyzable cases of ARHS demonstrated FOXO1 translocation whereas PAX5 translocation was not detected in any case. Conclusion: Although the testing for PAX5 rearrangement was based on protein-protein network analysis, our study showed that PAX5 translocation is not conspicuous in ARHS. PAX7/3::FOXO1 fusion genes feature ARMS, rendering crossreactivity between PAX7 and PAX3 a possible explanation. Nevertheless, PAX5 immunoreactivity and molecular translocation could be an adjunctive pathway that is confined to aggressive ARMS.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Humanos , Rabdomiossarcoma Alveolar/diagnóstico , Rabdomiossarcoma Alveolar/genética , Arábia Saudita , Hibridização in Situ Fluorescente , Translocação Genética , Proteínas de Fusão Oncogênica/genética , Proteína Forkhead Box O1/genética , Fator de Transcrição PAX5/genética
13.
Clin Cancer Res ; 29(2): 364-378, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36346688

RESUMO

PURPOSE: Rhabdomyosarcoma (RMS) is an aggressive soft-tissue sarcoma, which primarily occurs in children and young adults. We previously reported specific genomic alterations in RMS, which strongly correlated with survival; however, predicting these mutations or high-risk disease at diagnosis remains a significant challenge. In this study, we utilized convolutional neural networks (CNN) to learn histologic features associated with driver mutations and outcome using hematoxylin and eosin (H&E) images of RMS. EXPERIMENTAL DESIGN: Digital whole slide H&E images were collected from clinically annotated diagnostic tumor samples from 321 patients with RMS enrolled in Children's Oncology Group (COG) trials (1998-2017). Patches were extracted and fed into deep learning CNNs to learn features associated with mutations and relative event-free survival risk. The performance of the trained models was evaluated against independent test sample data (n = 136) or holdout test data. RESULTS: The trained CNN could accurately classify alveolar RMS, a high-risk subtype associated with PAX3/7-FOXO1 fusion genes, with an ROC of 0.85 on an independent test dataset. CNN models trained on mutationally-annotated samples identified tumors with RAS pathway with a ROC of 0.67, and high-risk mutations in MYOD1 or TP53 with a ROC of 0.97 and 0.63, respectively. Remarkably, CNN models were superior in predicting event-free and overall survival compared with current molecular-clinical risk stratification. CONCLUSIONS: This study demonstrates that high-risk features, including those associated with certain mutations, can be readily identified at diagnosis using deep learning. CNNs are a powerful tool for diagnostic and prognostic prediction of rhabdomyosarcoma, which will be tested in prospective COG clinical trials.


Assuntos
Aprendizado Profundo , Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Criança , Humanos , Adulto Jovem , Amarelo de Eosina-(YS) , Hematoxilina , Fatores de Transcrição Box Pareados/genética , Estudos Prospectivos , Rabdomiossarcoma/diagnóstico , Rabdomiossarcoma/genética , Rabdomiossarcoma Alveolar/genética
14.
Cell Rep ; 40(9): 111267, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36044855

RESUMO

Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of childhood characterized by the inability to exit the proliferative myoblast-like stage. The alveolar fusion positive subtype (FP-RMS) is the most aggressive and is mainly caused by the expression of PAX3/7-FOXO1 oncoproteins, which are challenging pharmacological targets. Here, we show that the DEAD box RNA helicase 5 (DDX5) is overexpressed in alveolar RMS cells and that its depletion and pharmacological inhibition decrease FP-RMS viability and slow tumor growth in xenograft models. Mechanistically, we provide evidence that DDX5 functions upstream of the EHMT2/AKT survival signaling pathway, by directly interacting with EHMT2 mRNA, modulating its stability and consequent protein expression. We show that EHMT2 in turns regulates PAX3-FOXO1 activity in a methylation-dependent manner, thus sustaining FP-RMS myoblastic state. Together, our findings identify another survival-promoting loop in FP-RMS and highlight DDX5 as a potential therapeutic target to arrest RMS growth.


Assuntos
RNA Helicases DEAD-box , Rabdomiossarcoma Alveolar , Rabdomiossarcoma Embrionário , Rabdomiossarcoma , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição Box Pareados/genética , RNA Helicases/metabolismo , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/patologia
15.
Sci Transl Med ; 14(653): eabq2096, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35857643

RESUMO

Chimeric transcription factors drive lineage-specific oncogenesis but are notoriously difficult to target. Alveolar rhabdomyosarcoma (RMS) is an aggressive childhood soft tissue sarcoma transformed by the pathognomonic Paired Box 3-Forkhead Box O1 (PAX3-FOXO1) fusion protein, which governs a core regulatory circuitry transcription factor network. Here, we show that the histone lysine demethylase 4B (KDM4B) is a therapeutic vulnerability for PAX3-FOXO1+ RMS. Genetic and pharmacologic inhibition of KDM4B substantially delayed tumor growth. Suppression of KDM4 proteins inhibited the expression of core oncogenic transcription factors and caused epigenetic alterations of PAX3-FOXO1-governed superenhancers. Combining KDM4 inhibition with cytotoxic chemotherapy led to tumor regression in preclinical PAX3-FOXO1+ RMS subcutaneous xenograft models. In summary, we identified a targetable mechanism required for maintenance of the PAX3-FOXO1-related transcription factor network, which may translate to a therapeutic approach for fusion-positive RMS.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Carcinogênese/genética , Linhagem Celular Tumoral , Criança , Proteína Forkhead Box O1/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/uso terapêutico , Rabdomiossarcoma/genética , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/patologia
16.
Nat Commun ; 13(1): 4297, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879366

RESUMO

Despite advances in multi-modal treatment approaches, clinical outcomes of patients suffering from PAX3-FOXO1 fusion oncogene-expressing alveolar rhabdomyosarcoma (ARMS) remain dismal. Here we show that PAX3-FOXO1-expressing ARMS cells are sensitive to pharmacological ataxia telangiectasia and Rad3 related protein (ATR) inhibition. Expression of PAX3-FOXO1 in muscle progenitor cells is not only sufficient to increase sensitivity to ATR inhibition, but PAX3-FOXO1-expressing rhabdomyosarcoma cells also exhibit increased sensitivity to structurally diverse inhibitors of ATR. Mechanistically, ATR inhibition leads to replication stress exacerbation, decreased BRCA1 phosphorylation and reduced homologous recombination-mediated DNA repair pathway activity. Consequently, ATR inhibitor treatment increases sensitivity of ARMS cells to PARP1 inhibition in vitro, and combined treatment with ATR and PARP1 inhibitors induces complete regression of primary patient-derived ARMS xenografts in vivo. Lastly, a genome-wide CRISPR activation screen (CRISPRa) in combination with transcriptional analyses of ATR inhibitor resistant ARMS cells identifies the RAS-MAPK pathway and its targets, the FOS gene family, as inducers of resistance to ATR inhibition. Our findings provide a rationale for upcoming biomarker-driven clinical trials of ATR inhibitors in patients suffering from ARMS.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma Embrionário , Rabdomiossarcoma , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Fusão Oncogênica/genética , Fator de Transcrição PAX3/genética , Fatores de Transcrição Box Pareados/genética , Rabdomiossarcoma/genética , Rabdomiossarcoma Alveolar/tratamento farmacológico , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Embrionário/genética
17.
Oncoimmunology ; 11(1): 2096349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813575

RESUMO

Rhabdomyosarcoma (RMS) is an aggressive pediatric soft tissue sarcoma characterized by a very poor prognosis when relapses occur after front-line therapy. Therefore, a major challenge for patients' management remains the identification of markers associated with refractory and progressive disease. In this context, cancer autoantibodies are natural markers of disease onset and progression, useful to unveil novel therapeutic targets. Herein, we matched autoantibody profiling of alveolar RMS (ARMS) patients with genes under regulatory control of PAX3-FOXO1 transcription factor and revealed fibroblast growth factor 8 (FGF8) as a novel ARMS tumor antigen of diagnostic, prognostic, and therapeutic potential. We demonstrated that high levels of FGF8 autoantibodies distinguished ARMS patients from healthy subjects and represented an independent prognostic factor of better event-free survival. FGF8 was overexpressed in ARMS tumors compared to other types of pediatric soft tissue sarcomas, acting as a positive regulator of cell signaling. Indeed, FGF8 was capable of stimulating ARMS cells migration and expression of pro-angiogenic and metastasis-related factors, throughout MAPK signaling activation. Of note, FGF8 was found to increase in recurrent tumors, independently of PAX3-FOXO1 expression dynamics. Risk of recurrence correlated positively with FGF8 expression levels at diagnosis and reduced FGF8 autoantibodies titer, almost as if to suggest a failure of the immune response to control tumor growth in recurring patients. This study provides evidence about the crucial role of FGF8 in ARMS and the protective function of natural autoantibodies, giving new insights into ARMS biology and laying the foundations for the development of new therapeutic strategies.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma Embrionário , Autoanticorpos/uso terapêutico , Fator 8 de Crescimento de Fibroblasto , Humanos , Imunidade , Recidiva Local de Neoplasia , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/uso terapêutico , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/patologia , Rabdomiossarcoma Embrionário/genética , Rabdomiossarcoma Embrionário/metabolismo
18.
PLoS Genet ; 18(5): e1009782, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35604932

RESUMO

The hallmarks of the alveolar subclass of rhabdomyosarcoma are chromosomal translocations that generate chimeric PAX3-FOXO1 or PAX7-FOXO1 transcription factors. Overexpression of either PAX-FOXO1s results in related cell transformation in animal models. Yet, in patients the two structural genetic aberrations they derived from are associated with distinct pathological manifestations. To assess the mechanisms underlying these differences, we generated isogenic fibroblast lines expressing either PAX-FOXO1 paralog. Mapping of their genomic recruitment using CUT&Tag revealed that the two chimeric proteins have distinct DNA binding preferences. In addition, PAX7-FOXO1 binding results in greater recruitment of the H3K27ac activation mark than PAX3-FOXO1 binding and is accompanied by greater transcriptional activation of neighbouring genes. These effects are associated with a PAX-FOXO1-specific alteration in the expression of genes regulating cell shape and the cell cycle. Consistently, PAX3-FOXO1 accentuates fibroblast cellular traits associated with contractility and surface adhesion and limits entry into S phase. In contrast, PAX7-FOXO1 drives cells to adopt an amoeboid shape, reduces entry into M phase, and causes increased DNA damage. Altogether, our results argue that the diversity of rhabdomyosarcoma manifestation arises, in part, from the divergence between the genomic occupancy and transcriptional activity of PAX3-FOXO1 and PAX7-FOXO1.


Assuntos
Proteínas de Fusão Oncogênica , Fatores de Transcrição Box Pareados , Rabdomiossarcoma Alveolar , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Fibroblastos , Proteína Forkhead Box O1/genética , Fatores de Transcrição Forkhead/genética , Humanos , Proteínas de Fusão Oncogênica/genética , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX7/genética , Fatores de Transcrição Box Pareados/genética , Rabdomiossarcoma/genética , Rabdomiossarcoma Alveolar/genética
19.
Pediatr Blood Cancer ; 69(9): e29652, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35338758

RESUMO

BACKGROUND: The possible application of gene fusion transcripts as tumor-specific noninvasive liquid biopsy biomarkers was investigated in blood plasma from patients with alveolar rhabdomyosarcoma (ARMS) and synovial sarcoma (SS). METHODS: Patients entered in the CWS Soft-Tissue Sarcoma Registry (SoTiSaR) with tumors positive for fusion genes and available blood/plasma samples were included in our analysis. Cell-free exosomal RNA was extracted and used to detect PAX-FOXO1 or SYT-SSX fusion transcripts by reverse transcription quantitative PCR (RT-qPCR). RESULTS: The analysis included 112 ethylene diamine tetraacetic acid blood samples from 80 patients (65 with ARMS, 15 with SS; 34 with localized, 46 with metastatic disease). For patients with metastatic ARMS, 62% (n = 18) of initial liquid biopsies were positive, and 16 (89%) of them showed initial bone marrow (BM) metastases. For all patients with primary localized ARMS, liquid biopsy was negative at diagnosis. Of the 48 plasma samples collected during therapy and follow-up, five were positive. None of the liquid biopsies from patients with SS were positive. CONCLUSIONS: This liquid biopsy assay based on the detection of fusion transcripts in cell-free RNA from blood exosomes is suitable for analysis of patients with ARMS. Results showed good correlation with the initial tumor status; liquid biopsy was positive in 94% of patients with metastatic ARMS and initial BM involvement, whereas biopsies from all patients with localized tumors were negative. Prospective validation and optimization of the assay, as well as its application for other markers in diagnostics and monitoring of soft-tissue sarcoma, are ongoing.


Assuntos
Neoplasias Ósseas , Rabdomiossarcoma Alveolar , Rabdomiossarcoma Embrionário , Rabdomiossarcoma , Sarcoma Sinovial , Neoplasias de Tecidos Moles , Biomarcadores Tumorais/genética , Humanos , Biópsia Líquida , Proteínas de Fusão Oncogênica/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rabdomiossarcoma Alveolar/diagnóstico , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/patologia , Sarcoma Sinovial/diagnóstico , Sarcoma Sinovial/genética , Sarcoma Sinovial/patologia , Neoplasias de Tecidos Moles/genética
20.
Rev Esp Patol ; 55(1): 57-62, 2022.
Artigo em Espanhol | MEDLINE | ID: mdl-34980443

RESUMO

Rhabdomyosarcoma is the most common soft tissue sarcoma in childhood and adolescence. Morphologically, two major forms are described: alveolar and embryonal rhabdomyosarcoma. The former is generally associated with a poorer prognosis and it usually harbors a characteristic fusion gene, PAX3/7-FOXO1, that is used to confirm the diagnosis. We present two cases, both of which exhibited the classic alveolar histology with immunohistochemical myogenic differentiation (Desmin, MYOD-1 and Myogenin expression) and lacked the characteristic fusion gene PAX3/7-FOXO1. The aim of this report is to highlight the importance of the molecular status in the study and diagnosis of these cases, as it seems to be not only a useful diagnostic tool, but also an important prognostic factor.


Assuntos
Rabdomiossarcoma Alveolar , Neoplasias de Tecidos Moles , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Fusão Gênica , Humanos , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Fator de Transcrição PAX7/genética , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...